Exercise 58

Let $f(x)=\frac{x}{\sqrt{1-\cos 2 x}}$.
(a) Graph f. What type of discontinuity does it appear to have at 0 ?
(b) Calculate the left and right limits of f at 0 . Do these values confirm your answer to part (a)?

Solution

Below is a graph of $f(x)$ versus x.

It seems to have a jump discontinuity at $x=0$. Another graph is shown for $-1<x<1$ to illustrate this better.

The aim is to calculate the left- and right-hand limits as $x \rightarrow 0$. Rewrite $f(x)$ first.

$$
f(x)=\frac{x}{\sqrt{1-\cos 2 x}}=\frac{x}{\sqrt{2 \sin ^{2} x}}=\frac{1}{\sqrt{2}} \frac{x}{|\sin x|}
$$

Now evaluate the limits.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{1}{\sqrt{2}} \cdot \frac{x}{-(\sin x)}=-\frac{1}{\sqrt{2}} \lim _{x \rightarrow 0^{-}} \frac{1}{\frac{\sin x}{x}}=-\frac{1}{\sqrt{2}} \approx-0.707 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{2}} \cdot \frac{x}{(\sin x)}=\frac{1}{\sqrt{2}} \lim _{x \rightarrow 0^{+}} \frac{1}{\frac{\sin x}{x}}=\frac{1}{\sqrt{2}} \approx 0.707
\end{aligned}
$$

